Copied to
clipboard

G = C24.326C23order 128 = 27

166th non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.326C23, C23.453C24, C22.2382+ 1+4, C22.1842- 1+4, C22⋊C4.76D4, C23.52(C2×D4), C428C442C2, C2.53(D46D4), C2.73(D45D4), C23.7Q868C2, C23.4Q822C2, C23.8Q865C2, C23.152(C4○D4), C23.11D443C2, (C22×C4).539C23, (C2×C42).558C22, (C23×C4).398C22, C22.304(C22×D4), C24.C2280C2, C23.23D4.34C2, C23.10D4.19C2, (C22×D4).168C22, C23.65C2386C2, C23.81C2338C2, C23.63C2384C2, C2.46(C22.45C24), C2.C42.190C22, C2.33(C22.26C24), C2.61(C22.46C24), C2.24(C22.33C24), C2.77(C23.36C23), (C4×C22⋊C4)⋊84C2, (C2×C4).906(C2×D4), (C2×C422C2)⋊9C2, (C2×C4).386(C4○D4), (C2×C4⋊C4).306C22, C22.329(C2×C4○D4), (C2×C22⋊C4).505C22, (C2×C22.D4).17C2, SmallGroup(128,1285)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.326C23
C1C2C22C23C22×C4C23×C4C4×C22⋊C4 — C24.326C23
C1C23 — C24.326C23
C1C23 — C24.326C23
C1C23 — C24.326C23

Generators and relations for C24.326C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=1, f2=db=bd, g2=c, ab=ba, eae=ac=ca, faf-1=ad=da, ag=ga, bc=cb, fef-1=geg-1=be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, fg=gf >

Subgroups: 500 in 262 conjugacy classes, 100 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C22.D4, C422C2, C23×C4, C22×D4, C4×C22⋊C4, C23.7Q8, C428C4, C23.8Q8, C23.23D4, C23.63C23, C24.C22, C23.65C23, C23.10D4, C23.11D4, C23.81C23, C23.4Q8, C2×C22.D4, C2×C422C2, C24.326C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, 2- 1+4, C23.36C23, C22.26C24, C22.33C24, D45D4, D46D4, C22.45C24, C22.46C24, C24.326C23

Smallest permutation representation of C24.326C23
On 64 points
Generators in S64
(2 27)(4 25)(5 53)(6 57)(7 55)(8 59)(10 14)(12 16)(17 43)(18 45)(19 41)(20 47)(21 44)(22 46)(23 42)(24 48)(30 51)(32 49)(34 39)(36 37)(54 62)(56 64)(58 63)(60 61)
(1 28)(2 25)(3 26)(4 27)(5 63)(6 64)(7 61)(8 62)(9 15)(10 16)(11 13)(12 14)(17 22)(18 23)(19 24)(20 21)(29 52)(30 49)(31 50)(32 51)(33 40)(34 37)(35 38)(36 39)(41 48)(42 45)(43 46)(44 47)(53 58)(54 59)(55 60)(56 57)
(1 50)(2 51)(3 52)(4 49)(5 53)(6 54)(7 55)(8 56)(9 40)(10 37)(11 38)(12 39)(13 35)(14 36)(15 33)(16 34)(17 48)(18 45)(19 46)(20 47)(21 44)(22 41)(23 42)(24 43)(25 32)(26 29)(27 30)(28 31)(57 62)(58 63)(59 64)(60 61)
(1 26)(2 27)(3 28)(4 25)(5 61)(6 62)(7 63)(8 64)(9 13)(10 14)(11 15)(12 16)(17 24)(18 21)(19 22)(20 23)(29 50)(30 51)(31 52)(32 49)(33 38)(34 39)(35 40)(36 37)(41 46)(42 47)(43 48)(44 45)(53 60)(54 57)(55 58)(56 59)
(1 58)(2 54)(3 60)(4 56)(5 31)(6 51)(7 29)(8 49)(9 42)(10 46)(11 44)(12 48)(13 47)(14 41)(15 45)(16 43)(17 39)(18 33)(19 37)(20 35)(21 38)(22 36)(23 40)(24 34)(25 59)(26 55)(27 57)(28 53)(30 62)(32 64)(50 63)(52 61)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 35 50 13)(2 36 51 14)(3 33 52 15)(4 34 49 16)(5 47 53 20)(6 48 54 17)(7 45 55 18)(8 46 56 19)(9 26 40 29)(10 27 37 30)(11 28 38 31)(12 25 39 32)(21 63 44 58)(22 64 41 59)(23 61 42 60)(24 62 43 57)

G:=sub<Sym(64)| (2,27)(4,25)(5,53)(6,57)(7,55)(8,59)(10,14)(12,16)(17,43)(18,45)(19,41)(20,47)(21,44)(22,46)(23,42)(24,48)(30,51)(32,49)(34,39)(36,37)(54,62)(56,64)(58,63)(60,61), (1,28)(2,25)(3,26)(4,27)(5,63)(6,64)(7,61)(8,62)(9,15)(10,16)(11,13)(12,14)(17,22)(18,23)(19,24)(20,21)(29,52)(30,49)(31,50)(32,51)(33,40)(34,37)(35,38)(36,39)(41,48)(42,45)(43,46)(44,47)(53,58)(54,59)(55,60)(56,57), (1,50)(2,51)(3,52)(4,49)(5,53)(6,54)(7,55)(8,56)(9,40)(10,37)(11,38)(12,39)(13,35)(14,36)(15,33)(16,34)(17,48)(18,45)(19,46)(20,47)(21,44)(22,41)(23,42)(24,43)(25,32)(26,29)(27,30)(28,31)(57,62)(58,63)(59,64)(60,61), (1,26)(2,27)(3,28)(4,25)(5,61)(6,62)(7,63)(8,64)(9,13)(10,14)(11,15)(12,16)(17,24)(18,21)(19,22)(20,23)(29,50)(30,51)(31,52)(32,49)(33,38)(34,39)(35,40)(36,37)(41,46)(42,47)(43,48)(44,45)(53,60)(54,57)(55,58)(56,59), (1,58)(2,54)(3,60)(4,56)(5,31)(6,51)(7,29)(8,49)(9,42)(10,46)(11,44)(12,48)(13,47)(14,41)(15,45)(16,43)(17,39)(18,33)(19,37)(20,35)(21,38)(22,36)(23,40)(24,34)(25,59)(26,55)(27,57)(28,53)(30,62)(32,64)(50,63)(52,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,35,50,13)(2,36,51,14)(3,33,52,15)(4,34,49,16)(5,47,53,20)(6,48,54,17)(7,45,55,18)(8,46,56,19)(9,26,40,29)(10,27,37,30)(11,28,38,31)(12,25,39,32)(21,63,44,58)(22,64,41,59)(23,61,42,60)(24,62,43,57)>;

G:=Group( (2,27)(4,25)(5,53)(6,57)(7,55)(8,59)(10,14)(12,16)(17,43)(18,45)(19,41)(20,47)(21,44)(22,46)(23,42)(24,48)(30,51)(32,49)(34,39)(36,37)(54,62)(56,64)(58,63)(60,61), (1,28)(2,25)(3,26)(4,27)(5,63)(6,64)(7,61)(8,62)(9,15)(10,16)(11,13)(12,14)(17,22)(18,23)(19,24)(20,21)(29,52)(30,49)(31,50)(32,51)(33,40)(34,37)(35,38)(36,39)(41,48)(42,45)(43,46)(44,47)(53,58)(54,59)(55,60)(56,57), (1,50)(2,51)(3,52)(4,49)(5,53)(6,54)(7,55)(8,56)(9,40)(10,37)(11,38)(12,39)(13,35)(14,36)(15,33)(16,34)(17,48)(18,45)(19,46)(20,47)(21,44)(22,41)(23,42)(24,43)(25,32)(26,29)(27,30)(28,31)(57,62)(58,63)(59,64)(60,61), (1,26)(2,27)(3,28)(4,25)(5,61)(6,62)(7,63)(8,64)(9,13)(10,14)(11,15)(12,16)(17,24)(18,21)(19,22)(20,23)(29,50)(30,51)(31,52)(32,49)(33,38)(34,39)(35,40)(36,37)(41,46)(42,47)(43,48)(44,45)(53,60)(54,57)(55,58)(56,59), (1,58)(2,54)(3,60)(4,56)(5,31)(6,51)(7,29)(8,49)(9,42)(10,46)(11,44)(12,48)(13,47)(14,41)(15,45)(16,43)(17,39)(18,33)(19,37)(20,35)(21,38)(22,36)(23,40)(24,34)(25,59)(26,55)(27,57)(28,53)(30,62)(32,64)(50,63)(52,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,35,50,13)(2,36,51,14)(3,33,52,15)(4,34,49,16)(5,47,53,20)(6,48,54,17)(7,45,55,18)(8,46,56,19)(9,26,40,29)(10,27,37,30)(11,28,38,31)(12,25,39,32)(21,63,44,58)(22,64,41,59)(23,61,42,60)(24,62,43,57) );

G=PermutationGroup([[(2,27),(4,25),(5,53),(6,57),(7,55),(8,59),(10,14),(12,16),(17,43),(18,45),(19,41),(20,47),(21,44),(22,46),(23,42),(24,48),(30,51),(32,49),(34,39),(36,37),(54,62),(56,64),(58,63),(60,61)], [(1,28),(2,25),(3,26),(4,27),(5,63),(6,64),(7,61),(8,62),(9,15),(10,16),(11,13),(12,14),(17,22),(18,23),(19,24),(20,21),(29,52),(30,49),(31,50),(32,51),(33,40),(34,37),(35,38),(36,39),(41,48),(42,45),(43,46),(44,47),(53,58),(54,59),(55,60),(56,57)], [(1,50),(2,51),(3,52),(4,49),(5,53),(6,54),(7,55),(8,56),(9,40),(10,37),(11,38),(12,39),(13,35),(14,36),(15,33),(16,34),(17,48),(18,45),(19,46),(20,47),(21,44),(22,41),(23,42),(24,43),(25,32),(26,29),(27,30),(28,31),(57,62),(58,63),(59,64),(60,61)], [(1,26),(2,27),(3,28),(4,25),(5,61),(6,62),(7,63),(8,64),(9,13),(10,14),(11,15),(12,16),(17,24),(18,21),(19,22),(20,23),(29,50),(30,51),(31,52),(32,49),(33,38),(34,39),(35,40),(36,37),(41,46),(42,47),(43,48),(44,45),(53,60),(54,57),(55,58),(56,59)], [(1,58),(2,54),(3,60),(4,56),(5,31),(6,51),(7,29),(8,49),(9,42),(10,46),(11,44),(12,48),(13,47),(14,41),(15,45),(16,43),(17,39),(18,33),(19,37),(20,35),(21,38),(22,36),(23,40),(24,34),(25,59),(26,55),(27,57),(28,53),(30,62),(32,64),(50,63),(52,61)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,35,50,13),(2,36,51,14),(3,33,52,15),(4,34,49,16),(5,47,53,20),(6,48,54,17),(7,45,55,18),(8,46,56,19),(9,26,40,29),(10,27,37,30),(11,28,38,31),(12,25,39,32),(21,63,44,58),(22,64,41,59),(23,61,42,60),(24,62,43,57)]])

38 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4V4W4X4Y4Z
order12···222224···44···44444
size11···144442···24···48888

38 irreducible representations

dim11111111111111122244
type+++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2D4C4○D4C4○D42+ 1+42- 1+4
kernelC24.326C23C4×C22⋊C4C23.7Q8C428C4C23.8Q8C23.23D4C23.63C23C24.C22C23.65C23C23.10D4C23.11D4C23.81C23C23.4Q8C2×C22.D4C2×C422C2C22⋊C4C2×C4C23C22C22
# reps121111111111111412411

Matrix representation of C24.326C23 in GL6(𝔽5)

100000
010000
001000
002400
000010
000014
,
400000
040000
004000
000400
000010
000001
,
100000
010000
004000
000400
000040
000004
,
100000
010000
001000
000100
000040
000004
,
010000
100000
003200
001200
000034
000032
,
200000
030000
002000
004300
000013
000014
,
400000
010000
002000
004300
000030
000003

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,2,0,0,0,0,0,4,0,0,0,0,0,0,1,1,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,3,1,0,0,0,0,2,2,0,0,0,0,0,0,3,3,0,0,0,0,4,2],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,2,4,0,0,0,0,0,3,0,0,0,0,0,0,1,1,0,0,0,0,3,4],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,2,4,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3] >;

C24.326C23 in GAP, Magma, Sage, TeX

C_2^4._{326}C_2^3
% in TeX

G:=Group("C2^4.326C2^3");
// GroupNames label

G:=SmallGroup(128,1285);
// by ID

G=gap.SmallGroup(128,1285);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,253,568,758,723,675,136]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=1,f^2=d*b=b*d,g^2=c,a*b=b*a,e*a*e=a*c=c*a,f*a*f^-1=a*d=d*a,a*g=g*a,b*c=c*b,f*e*f^-1=g*e*g^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,f*g=g*f>;
// generators/relations

׿
×
𝔽